Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mapping morphological shape as a high-dimensional functional curve.

Identifieur interne : 000D92 ( Main/Exploration ); précédent : 000D91; suivant : 000D93

Mapping morphological shape as a high-dimensional functional curve.

Auteurs : Guifang Fu ; Mian Huang ; Wenhao Bo ; Han Hao [États-Unis] ; Rongling Wu [États-Unis]

Source :

RBID : pubmed:28062411

Descripteurs français

English descriptors

Abstract

Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci (QTL) affect the progress of this research. In this article, we propose a novel integrated framework that incorporates shape analysis, statistical curve modeling and genetic mapping to detect significant QTLs regulating variation of biological shape traits. After quantifying morphological shape via a radius centroid contour approach, each shape, as a phenotype, was characterized as a high-dimensional curve, varying as angle θ runs clockwise with the first point starting from angle zero. We then modeled the dynamic trajectories of three mean curves and variation patterns as functions of θ. Our framework led to the detection of a few significant QTLs regulating the variation of leaf shape collected from a natural population of poplar, Populus szechuanica var tibetica. This population, distributed at altitudes 2000-4500 m above sea level, is an evolutionarily important plant species. This is the first work in the quantitative genetic shape mapping area that emphasizes a sense of 'function' instead of decomposing the shape into a few discrete principal components, as the majority of shape studies do.

DOI: 10.1093/bib/bbw111
PubMed: 28062411
PubMed Central: PMC5952977


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mapping morphological shape as a high-dimensional functional curve.</title>
<author>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
<affiliation>
<nlm:affiliation>Department of Math and Statistics, Utah State University, Logan, Utah, USA 84321.</nlm:affiliation>
<wicri:noCountry code="subField">USA 84321</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Huang, Mian" sort="Huang, Mian" uniqKey="Huang M" first="Mian" last="Huang">Mian Huang</name>
<affiliation>
<nlm:affiliation>Data Engineering Center, Shanghai University of Finance and Economics, Shanghai, China 200433.</nlm:affiliation>
<wicri:noCountry code="subField">China 200433</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China 100083.</nlm:affiliation>
<wicri:noCountry code="subField">China 100083</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hao, Han" sort="Hao, Han" uniqKey="Hao H" first="Han" last="Hao">Han Hao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Statistical Genetics, The Pennsylvania State University, Hershey</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China 100083.</nlm:affiliation>
<wicri:noCountry code="subField">China 100083</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Statistical Genetics, The Pennsylvania State University, Hershey</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:28062411</idno>
<idno type="pmid">28062411</idno>
<idno type="doi">10.1093/bib/bbw111</idno>
<idno type="pmc">PMC5952977</idno>
<idno type="wicri:Area/Main/Corpus">001490</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001490</idno>
<idno type="wicri:Area/Main/Curation">001490</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001490</idno>
<idno type="wicri:Area/Main/Exploration">001490</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mapping morphological shape as a high-dimensional functional curve.</title>
<author>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
<affiliation>
<nlm:affiliation>Department of Math and Statistics, Utah State University, Logan, Utah, USA 84321.</nlm:affiliation>
<wicri:noCountry code="subField">USA 84321</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Huang, Mian" sort="Huang, Mian" uniqKey="Huang M" first="Mian" last="Huang">Mian Huang</name>
<affiliation>
<nlm:affiliation>Data Engineering Center, Shanghai University of Finance and Economics, Shanghai, China 200433.</nlm:affiliation>
<wicri:noCountry code="subField">China 200433</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China 100083.</nlm:affiliation>
<wicri:noCountry code="subField">China 100083</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Hao, Han" sort="Hao, Han" uniqKey="Hao H" first="Han" last="Hao">Han Hao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Statistical Genetics, The Pennsylvania State University, Hershey</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
<affiliation>
<nlm:affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China 100083.</nlm:affiliation>
<wicri:noCountry code="subField">China 100083</wicri:noCountry>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Pennsylvanie</region>
</placeName>
<wicri:cityArea>Center for Statistical Genetics, The Pennsylvania State University, Hershey</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Briefings in bioinformatics</title>
<idno type="eISSN">1477-4054</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (methods)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Leaves (anatomy & histology)</term>
<term>Plant Leaves (genetics)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartographie chromosomique (méthodes)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Feuilles de plante (anatomie et histologie)</term>
<term>Feuilles de plante (génétique)</term>
<term>Gènes de plante (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (génétique)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie chromosomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Computer Simulation</term>
<term>Genes, Plant</term>
<term>Models, Statistical</term>
<term>Phenotype</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chromosomes de plante</term>
<term>Gènes de plante</term>
<term>Locus de caractère quantitatif</term>
<term>Modèles statistiques</term>
<term>Phénotype</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci (QTL) affect the progress of this research. In this article, we propose a novel integrated framework that incorporates shape analysis, statistical curve modeling and genetic mapping to detect significant QTLs regulating variation of biological shape traits. After quantifying morphological shape via a radius centroid contour approach, each shape, as a phenotype, was characterized as a high-dimensional curve, varying as angle θ runs clockwise with the first point starting from angle zero. We then modeled the dynamic trajectories of three mean curves and variation patterns as functions of θ. Our framework led to the detection of a few significant QTLs regulating the variation of leaf shape collected from a natural population of poplar, Populus szechuanica var tibetica. This population, distributed at altitudes 2000-4500 m above sea level, is an evolutionarily important plant species. This is the first work in the quantitative genetic shape mapping area that emphasizes a sense of 'function' instead of decomposing the shape into a few discrete principal components, as the majority of shape studies do.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28062411</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1477-4054</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>05</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Briefings in bioinformatics</Title>
<ISOAbbreviation>Brief Bioinform</ISOAbbreviation>
</Journal>
<ArticleTitle>Mapping morphological shape as a high-dimensional functional curve.</ArticleTitle>
<Pagination>
<MedlinePgn>461-471</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/bib/bbw111</ELocationID>
<Abstract>
<AbstractText>Detecting how genes regulate biological shape has become a multidisciplinary research interest because of its wide application in many disciplines. Despite its fundamental importance, the challenges of accurately extracting information from an image, statistically modeling the high-dimensional shape and meticulously locating shape quantitative trait loci (QTL) affect the progress of this research. In this article, we propose a novel integrated framework that incorporates shape analysis, statistical curve modeling and genetic mapping to detect significant QTLs regulating variation of biological shape traits. After quantifying morphological shape via a radius centroid contour approach, each shape, as a phenotype, was characterized as a high-dimensional curve, varying as angle θ runs clockwise with the first point starting from angle zero. We then modeled the dynamic trajectories of three mean curves and variation patterns as functions of θ. Our framework led to the detection of a few significant QTLs regulating the variation of leaf shape collected from a natural population of poplar, Populus szechuanica var tibetica. This population, distributed at altitudes 2000-4500 m above sea level, is an evolutionarily important plant species. This is the first work in the quantitative genetic shape mapping area that emphasizes a sense of 'function' instead of decomposing the shape into a few discrete principal components, as the majority of shape studies do.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fu</LastName>
<ForeName>Guifang</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Math and Statistics, Utah State University, Logan, Utah, USA 84321.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Mian</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Data Engineering Center, Shanghai University of Finance and Economics, Shanghai, China 200433.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bo</LastName>
<ForeName>Wenhao</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China 100083.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hao</LastName>
<ForeName>Han</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China 100083.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 HL119178</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 TR000127</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>UL1 TR002014</GrantID>
<Acronym>TR</Acronym>
<Agency>NCATS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Brief Bioinform</MedlineTA>
<NlmUniqueID>100912837</NlmUniqueID>
<ISSNLinking>1467-5463</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="Y">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28062411</ArticleId>
<ArticleId IdType="pii">bbw111</ArticleId>
<ArticleId IdType="doi">10.1093/bib/bbw111</ArticleId>
<ArticleId IdType="pmc">PMC5952977</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2016 Apr;210(1):343-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26580864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>HFSP J. 2008 Apr;2(2):110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19404477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2012 Apr;66(4):1010-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22486686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Phys Anthropol. 2013 Oct;152(2):186-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Med. 2004 Oct 15;23(19):3033-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15351959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2465-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23872539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Sep;26(9):3616-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25271240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Jan 7;275(1630):71-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17956847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2010 Jan 27;10:28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20105331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anat Rec (Hoboken). 2015 Jan;298(1):314-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25339502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Feb;104(2-3):241-247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Methods Programs Biomed. 2013 Sep;111(3):613-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23810082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometrics. 2003 Sep;59(3):676-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14601769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Sep;11(9):623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20697423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bus Econ Stat. 2014;32(2):259-270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24976675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Image Anal. 2016 Apr;29:12-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26766206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001511</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20182604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):210-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20403315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004;16 Suppl:S181-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15131251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2006 Nov;19(6):1861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2008 Jan;62(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18005154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2013 Jun;110(6):511-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23572125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2014 May 1;94(5):662-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24746957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Oct;21(10):2999-3007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 1999 Mar;48(1):192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12078640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Dev Biol. 2005;49(5-6):547-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16096964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(1):e29570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22253737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Apr;210(2):694-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26680017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Mar;158(3):1230-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22247269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2006 Mar;60(3):563-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16637501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Orthod Dentofacial Orthop. 2004 Dec;126(6):749-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15592225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:54-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25658908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2014 Oct;15(5):380-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25435800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 19;102(29):10221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16009935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jan;164(1):259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24285849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jun;24(6):2318-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Jul;92(7):1141-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2010 Mar;175(3):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20095825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insight J. 2006;(1071):242-250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21941375</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bo, Wenhao" sort="Bo, Wenhao" uniqKey="Bo W" first="Wenhao" last="Bo">Wenhao Bo</name>
<name sortKey="Fu, Guifang" sort="Fu, Guifang" uniqKey="Fu G" first="Guifang" last="Fu">Guifang Fu</name>
<name sortKey="Huang, Mian" sort="Huang, Mian" uniqKey="Huang M" first="Mian" last="Huang">Mian Huang</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Hao, Han" sort="Hao, Han" uniqKey="Hao H" first="Han" last="Hao">Han Hao</name>
</region>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D92 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D92 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28062411
   |texte=   Mapping morphological shape as a high-dimensional functional curve.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28062411" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020